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Novel quinone-fused corroles
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Abstract—Gallium(III)(pyridine) complex of 5,10,15-tris(pentafluorophenyl)corrole-3-carbaldehyde was used as a precursor of an
azomethine ylide, which was trapped in 1,3-dipolar cycloaddition reactions with quinones. Besides the expected dehydrogenated
1,3-dipolar cycloadducts, novel quinone-fused corrole derivatives were also obtained in moderate yields.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, the corrole chemistry has attracted
the interest of many researchers, mainly due to the dis-
closure of efficient synthetic methodologies1 and their
promising potential applications2 in catalysis,3 in the
production of sensors4 and solar cells5 and also in medi-
cine.6 Knowing that the properties/activities of these
compounds are strongly dependent on the structure of
the substituents on the macrocycle, the chemical func-
tionalization of corroles at the b- and meso-positions is
an active and exciting field.7

In the past few years we have shown that porphyrins can
participate in Diels–Alder8 and in 1,3-dipolar cycloaddi-
tion9 reactions. We have also reported that corroles take
part in [4+2] and [4+4] cycloadditions.10 Now we report
the use of the gallium(III)(pyridine) complex of 5,10,15-
tris(pentafluorophenyl)corrole-3-carbaldehyde7c,11 1 as
a precursor of azomethine ylide 2 and its reaction with
1,4-benzoquinone, 1,4-naphthoquinone, and 1,4-anthra-
quinone. Besides the expected dehydrogenated 1,3-di-
polar cycloadducts, novel quinone-fused corrole
derivatives were also obtained (Scheme 1).

The first cycloaddition reaction was carried out by
refluxing a toluene solution of corrole-3-carbaldehyde
1, N-methylglycine (7 equiv), and 1,4-benzoquinone
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(2 equiv) for 1 h.12 TLC analysis of the reaction mixture
revealed only one major product, which was purified by
flash chromatography (silica); compound 3 (green) was
obtained in 90% yield. Its 1H NMR spectrum13,14 shows
one singlet at d 9.18 ppm (H-2) and several doublets at d
8.56–9.16 ppm corresponding to the other b-pyrrolic
protons. The signals at d 6.57, 6.76, 7.56 ppm were
assigned to the resonances of the isoindole protons;
the resonance of the N–CH3 protons appears at d
3.70 ppm. The HMBC spectrum shows correlation
between the singlet at d 9.18 ppm (H-2) and the signal
at d 133.5 ppm (C-1 0), which is correlated with the
singlet at d 3.70 ppm (N–CH3). This is consistent with
the structure proposed for compound 3.

Interestingly, the reaction with 1,4-naphthoquinone,
under similar reaction conditions, afforded the expected
compound 415 (27% yield) and also the novel quinone-
fused corrole derivative 516 as the main product (46%
yield). The formation of compound 5 is quite surprising
since a similar reaction with a b-formylporphyrin, N-
methylglycine, and 1,4-naphthoquinone only afforded
the expected dehydrogenated 1,3-dipolar cyclo-
adducts.9b This result shows a clear difference in the
reactivity of porphyrins and corroles. The same type
of quinone-fused corrole derivative was also obtained
when 1,4-anthraquinone17 was used as dipolarophile.
In this case compounds 618 and 719 were obtained in
31% and 18% yields, respectively.

The structure of compounds 5 and 7 was deduced from
their mass and NMR spectra. The mass spectrum of
compound 5 shows a molecular ion peak at m/z 1042,
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Scheme 1.

Figure 1. (a) Molecular unit present in the crystal structure of corrole
5. (b) Detailed view of the coordination environment of the central
Ga3+ cation, {GaN5}, resembling a slightly distorted raised square
pyramid. Bond lengths (in Å): Ga(1)–N(21) 1.977(13); Ga(1)–N(22)
1.946(14); Ga(1)–N(23) 1.943(13); Ga(1)–N(24) 1.957(13); Ga(1)–N(1)
2.028(14). Bond angles (in �): N(21)–Ga(1)–N(1) 99.9(6); N(22)–
Ga(1)–N(21) 88.7(6); N(22)–Ga(1)–N(24) 157.5(5); N(22)–Ga(1)–N(1)
99.1(6); N(23)–Ga(1)–N(21) 157.3(5); N(23)–Ga(1)–N(22) 94.8(6);
N(23)–Ga(1)–N(24) 89.1(6); N(23)–Ga(1)–N(1) 101.6(6); N(24)–
Ga(1)–N(21) 79.6(6); N(24)–Ga(1)–N(1) 101.8(6).
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which corresponds to the molecular weight of the 1,3-
dipolar cycloadduct minus a methylamine molecule.
While the 1H NMR spectrum of 4 shows the signals cor-
responding to the N–CH3 (d 3.79 ppm) and H-2 (d
9.25 ppm) protons, these signals are absent in the 1H
NMR spectrum of 5, which shows two singlets at d
9.04 ppm (H-8 0) and 10.32 (H-1 0), eight doublets at d
8.16–9.62 ppm and a multiplet at d 7.57–7.62 ppm. The
NOESY spectrum of 5 reveals a NOE cross-peak
between the singlet at d 10.32 ppm and the doublet at d
9.62 ppm; the latter also couples with the doublet at d
8.91 ppm. These three signals are due to the proton reso-
nances of H-1 0, H-18, and H-17, respectively. The
HMBC shows correlations between the signal at d
183.1 ppm of a carbonyl group and the signals of H-1 0

and the doublet at d 8.16 ppm. These signals were then
assigned to the resonances of C-2 0 and H-3 0, respectively.
The high chemical shift of H-18 is due to the deshielding
anisotropic effect of the anthraquinone residue.

The structure of compound 5 was confirmed by single-
crystal X-ray diffraction (Fig. 1).20 The registered
geometrical features of the derivatized 5,10,15-tris(penta-
fluorophenyl)corrolato ring are typical, as revealed by a
search in the Cambridge Structural Database.21,22 The
first crystallographic report of a metallocorrole with
Ga3+ was reported by Gross and co-workers.7a

The Ga–N bond lengths were found in the 1.943(13)–
2.028(14) Å, which are in good agreement with those
reported by Gross and co-workers for their compound.
Nevertheless, it is interesting to note that the Ga3+ in 5
is raised from the basal plane by only ca. 0.36 Å, which
is a statistically distinct value from that described by
Gross and co-workers (average of about 0.41 Å). Indi-
vidual molecular units of corrole 5 close pack along
the [100] direction of the unit cell mediated by a series
of cooperative p–p interactions, which alternate between
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Figure 3. Electronic absorption spectra of compounds 1, 5, and 7 at
the same concentration (1.6 · 10�5 M) in chloroform.
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those involving the coordinated pyridine molecules
(strengthened by C–H� � �p interactions—not shown),
and those involving the derivatized 5,10,15-tris(penta-
fluorophenyl)corrolato rings, ultimately leading to
supramolecular ladders, which are interlocked in the
bc plane of the unit cell in a typical herringbone fashion
(Fig. 2).

The mechanism for the formation of compounds 5 and 7
is still under investigation but probably it involves a 1,5-
electrocyclization of the azomethine ylide23 to a pyrrolo-
[3,4-b]corrole followed by a Diels–Alder reaction with
1,4-naphthoquinone (or 1,4-anthraquinone). Deamina-
tion of the resulting Diels–Alder adducts leads to the
quinone-fused corrole derivatives 5 or 7. A similar
mechanism was proposed by Smith and co-workers for
the synthesis of benzoporphyrins from pyrrolo[3,4-b]-
porphyrins.24
Figure 2. (a) Crystal packing of corrole 5 viewed in perspective along
the [100] crystallographic direction, emphasising the presence of
supramolecular ladders (assembled via a series of cooperative p–p
interactions) which pack in a typical herringbone fashion in the bc

plane of the unit cell (ladders represented with different colour). (b)
Schematic representation of the interlocking of adjacent ladders.
Hydrogen and fluorine atoms have been omitted for clarity purposes.
The electronic absorption spectra of compounds 3, 4,
and 6 are quite similar to that of corrole-3-carbaldehyde
1. However, the spectra of the two quinone-fused
corrole derivatives, which are similar between them,
are significantly different from the spectra of the other
products (Fig. 3). Besides the Soret band, they show
intense absorption bands at 450–520 nm and at 650–
670 nm. This indicates that in compounds 5 and 7 the
delocalization of the p-electrons throughout the corrole
and quinone units results in a p-extended chromophore.

In conclusion, we have shown, for the first time, that
corrole-3-carbaldehyde 1 can be used as a precursor of
azomethine ylides that participate in 1,3-dipolar cyclo-
addition reactions with quinones. In those reactions,
besides the expected dehydrogenated cycloadducts, novel
p-extended corrole derivatives are also formed. This is in
sharp contrast with the reactivity of b-formylporphyrins
under similar reaction conditions. The novel quinone-
fused corrole derivatives show interesting electronic
absorption spectra, with intense absorption bands at
650–670 nm and, because of that, are potential candi-
dates as photosensitizers for PDT.
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